Designing and Implementing a Data Science solution on Azure -koulutuksessa käydään läpi uudet tavat tehdä Machine Learning -malleja Azuressa ilman koodausta Machine Learning Designerilla, sekä Notebookeilla.
Lisäksi koulutuksessa käydään läpi koko ML Pipeline: Datan käsittely, laskentaympäristön pystyttäminen, algoritimien automatisoitu valinta, hyperparametrien virittäminen, tuotantoon siirto, monitorointi jne. Siis käytännössä koko ketju alusta loppuun modernin koneoppimisen toteuttamiseen Azure-ympäristössä.
Tavoite
Opi kuinka teet modernia koneoppimista Azuressa.
Kenelle
Tämä koulutus on suunnattu data- ja IT -asiantuntijarooleille mm. Data Scientist, Data Engineer, Data Analyst, IT-Architect, IT-Specialist ja Applications Specialist.
Koulutus edellyttää Python-kielen perusteiden sekä Machine Learning -perusteiden tuntemusta esimerkiksi Azure AI Fundamentals -kokonaisuutta tai vastaavia taitoja.
Lisätiedot
Koulutus valmentaa Microsoftin viralliseen Exam DP-100 Designing and Implementing a Data Science Solution on Azure -sertifiointitestiin.
Koulutuksen sisältö
Design a machine learning solution
- Design a data ingestion strategy for machine learning projects
- Design a machine learning model training solution
- Design a model deployment solution
Explore the Azure Machine Learning Workspace
- Explore Azure Machine Learning workspace resources and assets
- Explore developer tools for workspace interaction
Make data available in Azure Machine Learning
- Create Datastores
- Create Data Assets
Work with compute in Azure Machine Learning
- Work with compute targets in Azure Machine Learning
- Work with environments in Azure Machine Learning
Use no-code machine learning with the Azure Machine Learning Designer
- Explore Automate Machine Learning
- Find the best classification model with Automated Machine Learning
Use notebooks for experimentation in Azure Machine Learning
- Track model training in notebooks with MLflow
Train models with scripts in Azure Machine Learning
- Run a training script as a command job in Azure Machine Learning
- Track model training with MLflow in jobs
- Perform hyperparameter tuning with Azure Machine Learning
Optimize model training in Azure Machine Learning
- Run pipelines in Azure Machine Learning
Manage and review models in Azure Machine Learning
- Register an MLflow model in Azure Machine Learning
- Manage and compare models in Azure Machine Learning
Deploy and consume models with Azure Machine Learning
- Register an MLflow model in Azure Machine Learning
- Manage and compare models in Azure Machine Learning
Design a machine learning operations (MLOps) solution
- Understand MLOps
- Design an MLOps solution
Avainsanat
Azure Machine Learning, Data Science