DP-600 Implement analytics solutions using Microsoft Fabric

1990  + ALV

Valitse päivämäärä ilmoittautumista varten

Implement analytics solutions using Microsoft Fabric -koulutuksessa käydään läpi kattavasti ne Microsoft Fabricin komponentit (Lakehouse, Data Warehouse, DataFlows, Data Pipelines, Semantic Models, Security), joiden avulla toteutetaan analytiikkaratkaisut.

Huomioithan, että Microsoft Fabricista on myös toinen koulutus DP-700 Microsoft Fabric Data Engineer, joka on osin päällekkäinen tämän koulutuksen kanssa, mutta painottuu enemmän Apache Sparkin käyttöön ja reaaliaikaisen datan käsittelyyn.

Tavoite

Opi yritystason data-analytiikkaratkaisujen toteuttaminen Microsoft Fabricilla.

Kenelle

Koulutus on suunnattu Data Analytis ja Data Engineer -asiantuntijoille, arkkitehdeille ja kaikille, joiden tulee osata Microsoft Fabric -tekniikat.

Koulutukseen osallistujalla on suositeltavaa olla Power BI osaaminen (esim. PL-300 Microsoft Power BI Data Analyst -koulutus tai vastaava) sekä osaamista SQL:n ja/tai DAX:in perusteista.

Lisätiedot

Koulutus valmentaa Microsoftin viralliseen Microsoft Certified: Fabric Analytics Engineer Associate -sertifiontitestiin.

Koulutuksen  sisältö

Explore end-to-end analytics with Microsoft Fabric

  • Describe end-to-end analytics in Microsoft Fabric.
  • Understand data teams and roles that use Fabric.
  • Describe how to enable and use Fabric.

Get started with Lakehouses in Microsoft Fabric

  • Describe core features and capabilities of lakehouses in Microsoft Fabric
  • Create a lakehouse
  • Ingest data into files and tables in a lakehouse
  • Query lakehouse tables with SQL

Ingest Data with Dataflows Gen2 in Microsoft Fabric

  • Describe Dataflow (Gen2) capabilities in Microsoft Fabric
  • Create Dataflow (Gen2) solutions to ingest and transform data
  • Include a Dataflow (Gen2) in a pipeline

Use Data Factory pipelines in Microsoft Fabric

  • Describe pipeline capabilities in Microsoft Fabric
  • Use the Copy Data activity in a pipeline
  • Create pipelines based on predefined templates
  • Run and monitor pipelines

Use Apache Spark in Microsoft Fabric

  • Prepare to use Apache Spark
  • Work with Data using Spark notebooks
  • Visualize data in Spark notebook

Get started with Data Warehouses in Microsoft Fabric

  • Describe data warehouses in Fabric
  • Understand a data warehouse vs a data Lakehouse
  • Work with data warehouses in Fabric
  • Create and manage datasets within a data warehouse

Load data into a Microsoft Fabric data warehouse

  • Learn different strategies to load data into a data warehouse in Microsoft Fabric.
  • Learn how to build a data pipeline to load a warehouse in Microsoft Fabric.
  • Learn how to load data in a warehouse using T-SQL.
  • Learn how to load and transform data with dataflow (Gen 2).

Query a data warehouse in Microsoft Fabric

  • Use SQL query editor to query a data warehouse.
  • Explore how visual query editor works.
  • Learn how to connect and query a data warehouse using SQL Server Management Studio.

Monitor a Microsoft Fabric data warehouse

  • Monitor capacity unit usage with the Microsoft Fabric Capacity Metrics app.
  • Monitor current activity in the data warehouse with dynamic management views.
  • Monitor querying trends with query insights views.

Secure a Microsoft Fabric data warehouse

  • Dynamic data Masking.
  • Row level security
  • Column level security.

Add measures to Power BI semantic models

  • Understand implicit and explicit measures.
  • Create measures, calculated columns, and calculated tables.
  • Identify when to use a measure or calculated column

Design scalable semantic models

  • Choose appropriate storage modes for your semantic model.
  • Enable large semantic model storage format and incremental refresh.
  • Create relationships between tables in a semantic model.
  • Design dynamic elements to extend calculations in a semantic model.

Optimize a model for performance in Power BI

  • Review the performance of measures, relationships, and visuals.
  • Improve performance by reducing cardinality levels.
  • Optimize DirectQuery models with table level storage.
  • Create and manage aggregations.

Create and manage Power BI assets

  • Create core and specialized semantic models.
  • Create Power BI Template and Power BI Project files.
  • Use lineage view and endorse data assets in Power BI service.
  • Use XMLA endpoint to connect semantic models.

Enforce Power BI model security

  • Restrict access to Power BI model data with RLS.
  • Restrict access to Power BI model objects with OLS.
  • Apply good development practices to enforce Power BI model security.

Get started with Real-Time Intelligence with Microsoft Fabric

  • Use basic syntax and of Kusto Query Language (KQL) and querysets.
  • Describe how to execute T-SQL queries in the Queryset canvas.
  • Copy, export, and share data results.

Secure data access in Microsoft Fabric

  • Understand Fabric security model
  • Configure workspace and item permissions
  • Apply granular permissions.

Administer Microsoft Fabric

  • Describe Fabric admin tasks
  • Navigate the admin center
  • Manage user access.

Avainsanat

Microsoft Fabric, Data Analytics, Power BI, Lakehouse, Dataflow, Data Factory, Data Warehouse

Paikka

Päivämäärä