Implement analytics solutions using Microsoft Fabric -koulutuksessa käydään läpi kattavasti ne Microsoft Fabricin komponentit (Lakehouse, Data Warehouse, DataFlows, Data Pipelines, Semantic Models, Security), joiden avulla toteutetaan analytiikkaratkaisut.
Huomioithan, että Microsoft Fabricista on myös toinen koulutus DP-700 Microsoft Fabric Data Engineer, joka on osin päällekkäinen tämän koulutuksen kanssa, mutta painottuu enemmän Apache Sparkin käyttöön ja reaaliaikaisen datan käsittelyyn.
Tavoite
Opi yritystason data-analytiikkaratkaisujen toteuttaminen Microsoft Fabricilla.
Kenelle
Koulutus on suunnattu Data Analytis ja Data Engineer -asiantuntijoille, arkkitehdeille ja kaikille, joiden tulee osata Microsoft Fabric -tekniikat.
Koulutukseen osallistujalla on suositeltavaa olla Power BI osaaminen (esim. PL-300 Microsoft Power BI Data Analyst -koulutus tai vastaava) sekä osaamista SQL:n ja/tai DAX:in perusteista.
Lisätiedot
Koulutus valmentaa Microsoftin viralliseen Microsoft Certified: Fabric Analytics Engineer Associate -sertifiontitestiin.
Koulutuksen sisältö
Explore end-to-end analytics with Microsoft Fabric
- Describe end-to-end analytics in Microsoft Fabric.
- Understand data teams and roles that use Fabric.
- Describe how to enable and use Fabric.
Get started with Lakehouses in Microsoft Fabric
- Describe core features and capabilities of lakehouses in Microsoft Fabric
- Create a lakehouse
- Ingest data into files and tables in a lakehouse
- Query lakehouse tables with SQL
Ingest Data with Dataflows Gen2 in Microsoft Fabric
- Describe Dataflow (Gen2) capabilities in Microsoft Fabric
- Create Dataflow (Gen2) solutions to ingest and transform data
- Include a Dataflow (Gen2) in a pipeline
Use Data Factory pipelines in Microsoft Fabric
- Describe pipeline capabilities in Microsoft Fabric
- Use the Copy Data activity in a pipeline
- Create pipelines based on predefined templates
- Run and monitor pipelines
Use Apache Spark in Microsoft Fabric
- Prepare to use Apache Spark
- Work with Data using Spark notebooks
- Visualize data in Spark notebook
Get started with Data Warehouses in Microsoft Fabric
- Describe data warehouses in Fabric
- Understand a data warehouse vs a data Lakehouse
- Work with data warehouses in Fabric
- Create and manage datasets within a data warehouse
Load data into a Microsoft Fabric data warehouse
- Learn different strategies to load data into a data warehouse in Microsoft Fabric.
- Learn how to build a data pipeline to load a warehouse in Microsoft Fabric.
- Learn how to load data in a warehouse using T-SQL.
- Learn how to load and transform data with dataflow (Gen 2).
Query a data warehouse in Microsoft Fabric
- Use SQL query editor to query a data warehouse.
- Explore how visual query editor works.
- Learn how to connect and query a data warehouse using SQL Server Management Studio.
Monitor a Microsoft Fabric data warehouse
- Monitor capacity unit usage with the Microsoft Fabric Capacity Metrics app.
- Monitor current activity in the data warehouse with dynamic management views.
- Monitor querying trends with query insights views.
Secure a Microsoft Fabric data warehouse
- Dynamic data Masking.
- Row level security
- Column level security.
Add measures to Power BI semantic models
- Understand implicit and explicit measures.
- Create measures, calculated columns, and calculated tables.
- Identify when to use a measure or calculated column
Design scalable semantic models
- Choose appropriate storage modes for your semantic model.
- Enable large semantic model storage format and incremental refresh.
- Create relationships between tables in a semantic model.
- Design dynamic elements to extend calculations in a semantic model.
Optimize a model for performance in Power BI
- Review the performance of measures, relationships, and visuals.
- Improve performance by reducing cardinality levels.
- Optimize DirectQuery models with table level storage.
- Create and manage aggregations.
Create and manage Power BI assets
- Create core and specialized semantic models.
- Create Power BI Template and Power BI Project files.
- Use lineage view and endorse data assets in Power BI service.
- Use XMLA endpoint to connect semantic models.
Enforce Power BI model security
- Restrict access to Power BI model data with RLS.
- Restrict access to Power BI model objects with OLS.
- Apply good development practices to enforce Power BI model security.
Get started with Real-Time Intelligence with Microsoft Fabric
- Use basic syntax and of Kusto Query Language (KQL) and querysets.
- Describe how to execute T-SQL queries in the Queryset canvas.
- Copy, export, and share data results.
Secure data access in Microsoft Fabric
- Understand Fabric security model
- Configure workspace and item permissions
- Apply granular permissions.
Administer Microsoft Fabric
- Describe Fabric admin tasks
- Navigate the admin center
- Manage user access.
Avainsanat
Microsoft Fabric, Data Analytics, Power BI, Lakehouse, Dataflow, Data Factory, Data Warehouse


English